A MULTI-DIMENSIONAL MODEL ORDER SELECTION CRITERION
WITH IMPROVED IDENTIFIABILITY

Kefei Liu', H.C. Sé and Huang L€

T Department of Electronic Engineering, City University odiy Kong, Hong Kong
T Department of Electronic and Information Engineering
Harbin Institute of Technology Shenzhen Graduate Schd@nshen, China

ABSTRACT

A novel R-dimensional & > 3) model order selection criterion is
proposed for estimating the number of sources embeddedise.no
By extending the classical-mode matrix unfolding of the mea-
sulged tensop) € CM1*>*Mr tg multi-mode matrix unfolding,
(27!
tification, the unfolded matrix with the largest size is usdtean-
while, as the so-obtained unfolded matrix is of large sizgguence
of nested hypothesis tests for model order selection igedilin the
framework of the random matrix theory. The proposed enutoera
is able to identify up t@(v/M; x --- x Mg) signals whereas the
existing criteria can only identify at mogiax(Mi, - -- , Mg) — 1)
signals, which significantly enhances the identificatiorurérical
results are included to illustrate the performance of theppsed
enumerator.

Index Terms— model order selection, source enumeration, ran-

dom matrix theory, tensor algebra

1. INTRODUCTION

R-dimensional R-D), whereR > 3, array signal processing have
numerous applications such as wireless channel estimation
clear magnetic resonance (NMR) spectroscopy and muiinplet
multiple-output (MIMO) radar imaging [1]. In these implenta-
tions, it is of considerable interest to accurately detaethe source

— 1) unfolded matrices are obtained. To maximize the iden-

2. DATA MODEL

In general, the observations are modeled as
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whereag)(mr) is the m,-th element of thek-th factor of ther-
th mode form, = 1,--- , M, (r = 1,--- ,R), andzm, ... ,mp
represents i.i.d. zero-mean circularly symmetric com@axussian
(ZMCSCG) noise samples with varianceaf. The noise is uncor-
related in all dimensions. Usually, tHe-th dimension corresponds
to the temporal dimension, with/r = N denoting the number of
snapshots and,(cm (mg) denoting the complex amplitude of the
th signal at then rth time instant.

The tensor form of (1) is
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whereo denotes the outer produdy, € CM1**M=z i5 the mea-
surement tensor collecting all noisy observatiggisz CM1 < *Mr
is the noise tensor collecting noise components, mﬁ’d
[a{” (1), ,al”(M,)]T. Inthe R-D harmonic retrieval model [1],
a,(f) (r=1,---,R—1; k=1,---, K) has aVandermonde struc-
) 7ej(1\/17~—1)u§f)]T_

. (r)
ture of the form ofa,(f) =[1,e" |
The rank of a tensor is defined in [10]. In this paper, we assume
that the rank of the noise-free measurement tepsds equal to the

number by using th&-D structure of the array measurements. Usu-number of signals, i.ef. Given the noisy measurement ten3ar

ally, existing approaches require to stack tReD measurements
into a highly structured matrix, and then use one-dimeradi¢hD)
criteria for source enumeration. The 1-D source enumesaainly
consist of the minimum description length (MDL) [2], Akaile-
formation criterion (AIC) [3], exponential fitting test (HIf [4—6]
and random matrix theory (RMT) based criteria [7, 8]. In [0k
an R-D extension of the 1-D MDL/AIC/EFT criteria is proposed,
in which all -mode(r = 1,--- , R) eigenvalues of thé&?-D mea-

our goal is to estimate the tensor rank, i.e., the numbemgoBds K.
Let M = [[*, M,. The sample covariance matrix of the
mode(r = 1, -- , R) matrix unfolding ofY is defined as

~(r) Mr - o
Ry, = 35 Yoy eCH (3)

Classical eigenvalue-based detection criteria are 1-Bdaad

surement tens@y € CM1*xMr gre calculated and combined to cannot apply directly to thé2-D measurement data. One solution

form global eigenvalues. As more information of eigenvalagan
be employed for source enumeration, R criteria is superior to
the 1-D counterparts. However, their identifiability is yhimited to
(max(M,,---,Mgr) —1). To improve the identification, a novel

is to convert the measurement tensor to matrix form{mgode ma-
trix unfolding, and then employ one or a number of sets-afiode
(r =1,---, R) eigenvalues for source enumeration [5, 6, 9]. This
solution does not well exploit the inherent tensor struetaf the

RMT-basedR-D source enumerator is proposed in this paper bymeasurement data, and as a result the identifiability iddihpartic-

exploiting the tensor structure of the observed data.

ularly when none of the dimension sizes is large enough.



3. ALGORITHM DEVELOPMENT and column number equals to

3.1. Random Matrix Theory [8] i 4 (-1 — DI gy o+ (1 — DIy - - Iy 1
For noise-only observations, the distribution of the latgeample oA (gg—r = D Dioadjia - Tjg -2+
eigenvalue under large-sample large-sensor asymptaticisi char- (tjge1— DI Ty 1Ly 41 Ty 1+ +
acterized by Theorem 1 [11]. - (SRR VSRERY FHRY FARRERY FIRY SRRy § 2
Theorem 1L LetY bep x ¢ (¢ > p) matrix with i.i.d.
CN(0,0%I,) entries. In the joint limitp, ¢ — oo, with ¢/p — Clearly, whend = 1, the multi-mode matrix unfolding reduces
~v > 1, the distribution of the largest eigenvallieof the sample  to the classical-mode matrix unfolding. The sample covariance
covariance matrixR,, = Y'Y /q converges to a Tracy-Widom matrix associated with théry, - -+ ,rq4)-mode matrix unfolding
distribution Y, ry) is defined as
Pr{l1/027/1q,17} — Fy(s) 4 M
Tq,p R(m""’m) = 7MT1 o Vi yH (6)
where Yy M (ri,sra) P (ri,e,ra)
i 1 1 1 1 ) -1 Wheref%;ryl"” Td) € COMryMrg)x(MryMry)  The set of eigen-
Ha,p :5 7z T s o172 + o172 values of (6) is called thers, - - - , 74)-mode eigenvalues QF.
a=tp  ap-1/ \Ha=1p9g-1p  Har=19p-1 Note that each division of the index sét= {1,---, R} to
147 1 oy -1 two non-zero disjoint subset§rq,--- ,rq} and I/{ri,--- ,rq}
Ggp = L ( + P ) will result in a pair of mutually-transposed matrix unfaidi the
9 Ta-Llp  Tap-1 ) (r1,+-+ ,rq)-mode one with size of M, --- M,,) x —2—,
1/3 1 Td
with o, = (\/q +1/24+y/p+1/2) (1/\/q +1/2+1//p+1/2) , and theI/{ri, - ,ra}-mode one with size ofy—y— x

_ 2 _ 1/2 12y (M, --- M,,). The total number of such division éf the same as
Har= (\/Q+ 1/2+V/p+ 1/2) aNip = (o-vp % -/ (a1 g1 that of pairs of mutually-transposed matrix unfolding)afis

The above expressions providgp~2/?) convergence rate in
(4), and for finiteg, p, they provide good approximations under the (C}l% +Ch 4+ Cg—l) /2= -1 _ 1 )
following two conditions

) max(q, p) . As a pair of mutually-transposed unfold_ed matrices yiele th
min(g,p) > 1 and mintg,p) is not too large. (5)  same set of non-zero eigenvalues up to an irrelevant cdnstaln
«p tiplication factor, we consider only the one whose numberowafs

If a number of signals are embedded in noise, the distributio is less than or equal to that of the columns. We choose from the
of the largest sample eigenvalue under large-sample kagser 2%~ — 1 matrices the one with the largest sizes for source enumer-
asymptotic limit is characterized by Theorem 2 [7]. ation, which is denoted a8 (V).

Theorem 2 Consider a setting witti sufficiently strong sig- Taking an example oR = 4,M; = 5, My = 3,M3 =
nals. Then, in the asymptotic limit ¢ — +oo, withq/p — v >0, 6, M, = 4, € C>*3%6*4 there are totallg™ ' —1 = 7 unfolded
the (K +1)th largest sample eigenvalue has asymptotically the sammatrices, namelyy 5) = Vi € C¥ Vs =V, €
Tracy-Widom distribution as the largest eigenvalue of seanly — ¢15x24 Veu = y(T1 5 € C12x30, Vi = y(Tl - C6%60
Wishart matrix, with parameters gf p — K. 7 c (’Csxm y - YT e C4*%  and

Based on Theorems 1 and 2, an accurate source enumera) @3 = W o S =
tor has been developed in [8] where the signal number is est¥@ = Y34 €C - HenceY™ =Y 5 € C .
mated via a sequence of nested hypothesis tests. The hfgorit | he RMT-based source enumerator is originally proposed-o e
works as follows. Denote by; > --- > A\, the eigenvalues timate the number of 1-D signals. For estimating t_he numlber o
of R,,. Fork = 1,---,min(p,q) — 1, the hypothesis test is R-D signals at hand,_we prop%s)e to apply the algorithm t_o tlpe se
Ho: only k — 1 signals versus{;: at least: signals.H, is rejected of elgenvalue‘_s, associated v_vﬂﬁ_ , and call the rgsultant criterion
it A > 62(k) (figpr + 5()54.p1) Wheres(a) is determined R-D RMT. Th|sR-D_RMT criterion has the foIIowmg adv?lr;tages:
by F»(s(a)) = 1 — o with o being the confidence level. Her is 1) Higher detection probability. F_rom the c_h0|ce B, we
calculated based on the matrix perturbation theory andefiatively ~ Can see that among all unfolded matrices, the g;ff_erenmdmtthe
solving a non-linear system of equations [7, 8], with rerati im- number of rowsP; and that of columng), of_Y_ is the smalle_st.
proved accuracy over its maximum likelihood estimation. Therefore, conditions (5) can be better satisfied and bajieroxi-
mations can be achieved by using the Tracy-Widom distrdlouti

1) Improved identifiability. UsingY” (), the R-D RMT criterion

3.2. Proposed R-D Source Enumerator can detect up tgP; — 1) signals, while theR-D criterion in [9]

First, ther-mode matrix unfolding of a tensor is extended to thecan detect at mogimax(M;,--- , Mr) — 1) signals. ForR > 3,

multi-mode matrix unfolding. P, —1=0(/M; x -+ x Mg) > max(Mi,---,Mg) — 1.
Definition 1. Consider anJth-order tensolt € CI1>*>1s, In the absence of noise, it can be proved that the rarik 0f

Forl<ji<--<ja<J(1<d<J),the(ji, --,jqa)-mode s less than or equal to the rank 3% i.e., the number of signals.

) ) (1,1, % =2 Furthermore, for thé?-D harmonic retrieval model, whelf < P,
matrix unfolding oiX', denoted ag';, ... ;,) € C "N therank onél) has been shown by extensive numerical simulations
is a matrix which contains the element;, ... ; ) at the position ()
with row number equals to : to be equal to the rank @7 almost surely, iy, |r =1,--- ,R—

1; k=1,---, K} aredrawn from a continuous distribution, and the

iy, + o+ (G, — DIy - Ly, source amplitudes are i.i.d Gaussian distributed.



The performance of the RMT-based source enumerator with  Figure 4 considers a system with a 5-D array of side =
constant confidence level is not robust to the number of Egkar 3, M2 = 4, M3 = 5, My = 6,Ms = 8, with M5 = N = 8
a relatively low confidence level, it works well when the nienbf  snapshots. In this case, tfieD EFT/MDL/AIC criteria proposed
signals is small, while tends to underestimate the numbsigofls  in [9] can detect at most 7 sources, while the propoBed RMT
when the source number is large. On the other hand, for aveliat  criteria can detect up to 40. And again, the adaptive RMEddh
high confidence level, it works well for large source numbessile shows good robustness in a wide range of number of signalg@sand
tends to overestimation for small source numbers. To owveecitnis  performance outperforms the AIC/MDL.
drawback, we propose to use an adaptive confidence levebihsif
constant one in th&-D RMT criterion. Mathematically, in théth

(k=1,---,P1 — 1) test, 025

alk) = expllogas + (k —1)/(c — 1) - log(amia/a1)] k<c 02}
) (e +a2) — a(Pr — k) otherwise

(8) 0.15-

wherec = | P1/2] denotes the largest integer less than or equal
to P /2, a1 anday are the user-defined lower and upper bounds
of a, respectively, andmia = (a1 + @2)/2. The resultant source o1l
enumerator is called adaptive-D RMT.

ak)

0.05f

4. NUMERICAL EXAMPLES

i
45

We take theR-D harmonic retrieval model for illustration. The
spatial frequencie&](f)(r =1---,R-—1; k=1,--- ,K) are
i.I.d uniformly distributed within[—, 7], and the sources are i.i.d Fig 1: Confidence level(k) as a function of hypothesized number
ZMCSCG distributed with equal powerZ. The SNR is defined as  of signalsk when[as, as] = [107%,0.25].

SNR= 10log,, (02/02). 2000 independent Monte Carlo runs have

been conducted. The performance measure is the probadfilitg-

tection (PoD), i.e., F{|f( = K), averaged over spatial frequencies,

sources and noise realizations of all Monte Carlo runs.

The PoD’s of the following criteria are compared: MDL/AIC-us K=, Reth Mol5 5 5 5], &= 0,0001

ing eigenvalues associated with'”), two R-D RMT versions with
constant confidence levals = 10~* andas = 0.25, and adaptive 0ol i
RMT with «(k) defined as in (8). Figure 1 shows the curves(ft) ol 00
used in the following simulation. P/ wﬁ*’g
First we consider a system whefé = 3 and X' = 16 sources o7 : : % : %M 1
impinge on a 4-D array of siz&, = My = M3 = My = 5, with < 06r %gi?j
My = N = 5 snapshots. In Figure 2, the PoD of the RMT scheme "5 ost ,*
usingY ™) and other unfolded matrices for, = 10~* and K = 3 =
are compared. It can be seen that the PoD of the RMT scheng usin ’ f
Y () is always better than or comparable to that using other datbl o3y ' ‘ j Xi/x
matrices. Same observations are made for other paramétagse 0.2 ><',f
Figure 3 compare the PoD of different criteria. We can set tha o1l j o f%fRMTfY(: o .
the R-D RMT criterion can detect the true number of signals in both , AL RTeeranioies mavices
source number scenarios. While tReD MDL/AIC/EFT criteria [9] T R ° 10

can detect at most 4 sources, tReD RMT identifiability is signif-
icantly higher. However, the performance of tReD RMT with
constant confidence level is not robust to the true numbegoats.
For small number of signal®-D RMT with oi; = 10~ works well
and is consistent as the SNR goes to infinity, while for largen
ber of signals, it tends to underestimate the true numbeigogis
and whenK = 16, the PoD is less than 0.84 even at high SNR. On
the contrary,R-D RMT with oz = 0.25 tends to overestimation for
small source numbers and the PoD is only about 0.6 even at high 5. CONCLUSION

SNR whenK = 3, while for large source numbers, it works well

and gains large-SNR consistency. The adapiiv®e RMT is a good  We have proposed a nov&l-D (R > 3) detection criterion for ac-
compromise of both versions and more robust to source numbercurate source enumeration. With the generalized multienodtrix
it works well for both small and large source numbers andeags  unfolding of the measurement tensor and the random mabryh
near consistency in the larger-SNR limit. For relativelsglasource  (RMT), the eigenvalues associated with the unfolded mathrse
numbers, AIC/MDL is not consistent as the SNR goes to infinity number of rows is closest to that of the columns are used falemo
having a tendency to overestimate the true number of sigiiéis  order selection via a sequence of nested hypothesis testgp@ed
is consistent with [12]. with existing R-D detection schemes, the propos@eD RMT cri-

Fig. 22 Comparison of PoD of RMT by usind ") and other un-
folded matrices¢ = 10~*, K = 3).
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Fig. 3: PoD vs. SNR for a 4-D array of sizel; = M = Ms = My =5 (left: K = 3; right: K = 16).
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Fig. 4: PoD vs. SNR for a 5-D array of siz&/;

terion is able to significantly improve the identifiabiliffhe perfor-
mance of the adaptivR-D RMT criterion is robust and works well
in a wide range of number of signals.
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