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ABSTRACT

A novel R-dimensional (R ≥ 3) model order selection criterion is
proposed for estimating the number of sources embedded in noise.
By extending the classicalr-mode matrix unfolding of the mea-
sured tensorYYY ∈ C

M1×···×MR to multi-mode matrix unfolding,
(2R−1 − 1) unfolded matrices are obtained. To maximize the iden-
tification, the unfolded matrix with the largest size is used. Mean-
while, as the so-obtained unfolded matrix is of large size, asequence
of nested hypothesis tests for model order selection is utilized in the
framework of the random matrix theory. The proposed enumerator
is able to identify up toO(

√
M1 × · · · ×MR) signals whereas the

existing criteria can only identify at most(max(M1, · · · ,MR)− 1)
signals, which significantly enhances the identification. Numerical
results are included to illustrate the performance of the proposed
enumerator.

Index Terms— model order selection, source enumeration, ran-
dom matrix theory, tensor algebra

1. INTRODUCTION

R-dimensional (R-D), whereR ≥ 3, array signal processing have
numerous applications such as wireless channel estimation, nu-
clear magnetic resonance (NMR) spectroscopy and multiple-input
multiple-output (MIMO) radar imaging [1]. In these implementa-
tions, it is of considerable interest to accurately determine the source
number by using theR-D structure of the array measurements. Usu-
ally, existing approaches require to stack theR-D measurements
into a highly structured matrix, and then use one-dimensional (1-D)
criteria for source enumeration. The 1-D source enumerators mainly
consist of the minimum description length (MDL) [2], Akaikein-
formation criterion (AIC) [3], exponential fitting test (EFT) [4–6]
and random matrix theory (RMT) based criteria [7, 8]. In [5, 6, 9],
anR-D extension of the 1-D MDL/AIC/EFT criteria is proposed,
in which all r-mode(r = 1, · · · , R) eigenvalues of theR-D mea-
surement tensorYYY ∈ C

M1×···×MR are calculated and combined to
form global eigenvalues. As more information of eigenvalues can
be employed for source enumeration, theR-D criteria is superior to
the 1-D counterparts. However, their identifiability is only limited to
(max(M1, · · · ,MR)− 1). To improve the identification, a novel
RMT-basedR-D source enumerator is proposed in this paper by
exploiting the tensor structure of the observed data.

2. DATA MODEL

In general, the observations are modeled as

y(m1,··· ,mR) =

K
∑

k=1

a
(1)
k (m1) · · · a(R)

k (mR) + zm1,··· ,mR
(1)

wherea(r)
k (mr) is themr-th element of thek-th factor of ther-

th mode formr = 1, · · · ,Mr (r = 1, · · · , R), andzm1,··· ,mR

represents i.i.d. zero-mean circularly symmetric complexGaussian
(ZMCSCG) noise samples with variance ofσ2

z . The noise is uncor-
related in all dimensions. Usually, theR-th dimension corresponds
to the temporal dimension, withMR = N denoting the number of
snapshots anda(R)

k (mR) denoting the complex amplitude of thek-
th signal at themRth time instant.

The tensor form of (1) is

YYY =
K
∑

k=1

a
(1)
k ◦ · · · ◦ a(R)

k +ZZZ (2)

where◦ denotes the outer product,YYY ∈ C
M1×···×MR is the mea-

surement tensor collecting all noisy observations,ZZZ ∈ C
M1×···×MR

is the noise tensor collecting noise components, anda
(r)
k =

[a
(r)
k (1), · · · , a(r)

k (Mr)]
T . In theR-D harmonic retrieval model [1],

a
(r)
k (r = 1, · · · , R− 1; k = 1, · · · ,K) has a Vandermonde struc-

ture of the form ofa(r)
k = [1, ejµ

(r)
k , · · · , ej(Mr−1)µ

(r)
k ]T .

The rank of a tensor is defined in [10]. In this paper, we assume
that the rank of the noise-free measurement tensorYYY0 is equal to the
number of signals, i.e.,K. Given the noisy measurement tensorYYY ,
our goal is to estimate the tensor rank, i.e., the number of signalsK.

Let M =
∏R

r=1Mr. The sample covariance matrix of ther-
mode(r = 1, · · · , R) matrix unfolding ofYYY is defined as

R̂
(r)

yy =
Mr

M
YYY(r)YYYH

(r) ∈ C
Mr×Mr (3)

Classical eigenvalue-based detection criteria are 1-D based and
cannot apply directly to theR-D measurement data. One solution
is to convert the measurement tensor to matrix form byr-mode ma-
trix unfolding, and then employ one or a number of sets ofr-mode
(r = 1, · · · , R) eigenvalues for source enumeration [5, 6, 9]. This
solution does not well exploit the inherent tensor structure of the
measurement data, and as a result the identifiability is limited partic-
ularly when none of the dimension sizes is large enough.



3. ALGORITHM DEVELOPMENT

3.1. Random Matrix Theory [8]

For noise-only observations, the distribution of the largest sample
eigenvalue under large-sample large-sensor asymptotic limit is char-
acterized by Theorem 1 [11].

Theorem 1: Let Y be p × q (q ≥ p) matrix with i.i.d.
CN (0, σ2

Ip) entries. In the joint limitp, q → +∞, with q/p →
γ ≥ 1, the distribution of the largest eigenvaluel1 of the sample
covariance matrixRyy = Y Y

H/q converges to a Tracy-Widom
distribution

Pr

{

l1/σ
2 − µ̃q,p

σ̃q,p

}

→ F2(s) (4)

where

µ̃q,p=
1

q

(

1

σ
1/2
q−1,p

+
1

σ
1/2
q,p−1

)(

1

µq−1,p σ
1/2
q−1,p

+
1

µq,p−1 σ
1/2
q,p−1

)

−1

σ̃q,p =
1 + γq,p

q

(

1

σq−1,p
+

γq,p
σq,p−1

)

−1

with σq,p=
(

√

q + 1/2+
√

p+ 1/2
)(

1/
√

q + 1/2+1/
√

p+ 1/2
)1/3

,

µq,p=
(

√

q+ 1/2+
√

p+ 1/2
)2

andγq,p=(µq−1,p σ
1/2
q,p−1)/(µq,p−1 σ

1/2
q−1,p).

The above expressions provideO(p−2/3) convergence rate in
(4), and for finiteq, p, they provide good approximations under the
following two conditions

min(q, p) ≫ 1 and
max(q, p)
min(q, p)

is not too large. (5)

If a number of signals are embedded in noise, the distribution
of the largest sample eigenvalue under large-sample large-sensor
asymptotic limit is characterized by Theorem 2 [7].

Theorem 2: Consider a setting withK sufficiently strong sig-
nals. Then, in the asymptotic limitp, q → +∞, with q/p → γ > 0,
the(K+1)th largest sample eigenvalue has asymptotically the same
Tracy-Widom distribution as the largest eigenvalue of a noise-only
Wishart matrix, with parameters ofq, p−K.

Based on Theorems 1 and 2, an accurate source enumera-
tor has been developed in [8] where the signal number is esti-
mated via a sequence of nested hypothesis tests. The algorithm
works as follows. Denote byλ1 ≥ · · · ≥ λp the eigenvalues
of Ryy. For k = 1, · · · ,min(p, q) − 1, the hypothesis test is
H0: only k − 1 signals versusH1: at leastk signals.H0 is rejected
if λk > σ̂2(k) (µ̃q,p−k + s(α)σ̃q,p−k) wheres(α) is determined
byF2(s(α)) = 1−α with α being the confidence level. Here,σ̂2 is
calculated based on the matrix perturbation theory and via iteratively
solving a non-linear system of equations [7,8], with remarkably im-
proved accuracy over its maximum likelihood estimation.

3.2. Proposed R-D Source Enumerator

First, ther-mode matrix unfolding of a tensor is extended to the
multi-mode matrix unfolding.

Definition 1. Consider anJ th-order tensorXXX ∈ C
I1×···×IJ .

For 1 ≤ j1 < · · · < jd ≤ J (1 ≤ d < J), the(j1, · · · , jd)-mode

matrix unfolding ofXXX , denoted asXXX (j1,··· ,jd) ∈ C
(Ij1 ···Ijd

)×
I1···IJ

Ij1
···Ijd ,

is a matrix which contains the elementx(i1,··· ,iJ ) at the position
with row number equals to

ij1 + · · ·+ (ijd − 1)Ij1 · · · Ijd−1

and column number equals to

i1 + · · ·+ (ij1−1 − 1)I1 · · · Ij1−2 + (ij1+1 − 1)I1 · · · Ij1−1

+ · · ·+ (ijd−1 − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−2+

(ijd+1 − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−1 + · · ·+
(iJ − 1)I1 · · · Ij1−1Ij1+1 · · · Ijd−1Ijd+1 · · · IJ−1

Clearly, whend = 1, the multi-mode matrix unfolding reduces
to the classicalr-mode matrix unfolding. The sample covariance
matrix associated with the(r1, · · · ,rd)-mode matrix unfolding
YYY(r1,··· ,rd) is defined as

R̂
(r1,··· ,rd)

yy =
Mr1 · · ·Mrd

M
YYY(r1,··· ,rd)YYY

H
(r1,··· ,rd)

(6)

whereR̂
(r1,··· ,rd)

yy ∈ C
(Mr1 ···Mrd

)×(Mr1 ···Mrd
). The set of eigen-

values of (6) is called the(r1, · · · , rd)-mode eigenvalues ofYYY.
Note that each division of the index setI = {1, · · · , R} to

two non-zero disjoint subsets{r1, · · · , rd} and I/{r1, · · · , rd}
will result in a pair of mutually-transposed matrix unfolding: the
(r1, · · · , rd)-mode one with size of(Mr1 · · ·Mrd) × M

Mr1 ···Mrd

,

and the I/{r1, · · · , rd}-mode one with size of M
Mr1 ···Mrd

×
(Mr1 · · ·Mrd ). The total number of such division ofI , the same as
that of pairs of mutually-transposed matrix unfolding ofYYY, is

(

C1
R + C2

R + · · ·+ CR−1
R

)

/2 = 2R−1 − 1 (7)

As a pair of mutually-transposed unfolded matrices yield the
same set of non-zero eigenvalues up to an irrelevant constant mul-
tiplication factor, we consider only the one whose number ofrows
is less than or equal to that of the columns. We choose from the
2R−1 − 1 matrices the one with the largest sizes for source enumer-
ation, which is denoted asY (1).

Taking an example ofR = 4,M1 = 5,M2 = 3,M3 =
6,M4 = 4,YYY ∈ C

5×3×6×4, there are totally2R−1−1 = 7 unfolded
matrices, namely,YYY(2,3) = YYYT

(1,4) ∈ C
18×20, YYY(1,2) = YYYT

(3,4) ∈
C

15×24, YYY(2,4) = YYYT
(1,3) ∈ C

12×30, YYY(3) = YYYT
(1,2,4) ∈ C

6×60,

YYY(1) = YYYT
(2,3,4) ∈ C

5×72, YYY(4) = YYYT
(1,2,3) ∈ C

4×90, and

YYY(2) = YYYT
(1,3,4) ∈ C

3×120. HenceY (1) = YYY(2,3) ∈ C
18×20.

The RMT-based source enumerator is originally proposed to es-
timate the number of 1-D signals. For estimating the number of
R-D signals at hand, we propose to apply the algorithm to the set
of eigenvalues associated withY (1), and call the resultant criterion
R-D RMT. ThisR-D RMT criterion has the following advantages:

I) Higher detection probability. From the choice ofY (1), we
can see that among all unfolded matrices, the difference between the
number of rowsP1 and that of columnsQ1 of Y (1) is the smallest.
Therefore, conditions (5) can be better satisfied and betterapproxi-
mations can be achieved by using the Tracy-Widom distribution.

II) Improved identifiability. UsingY (1), theR-D RMT criterion
can detect up to(P1 − 1) signals, while theR-D criterion in [9]
can detect at most(max(M1, · · · ,MR)− 1) signals. ForR > 3,
P1 − 1 = O(

√
M1 × · · · ×MR) ≫ max(M1, · · · ,MR)− 1.

In the absence of noise, it can be proved that the rank ofY
(1)

is less than or equal to the rank ofYYY , i.e., the number of signals.
Furthermore, for theR-D harmonic retrieval model, whenK ≤ P1,
the rank ofY (1)

0 has been shown by extensive numerical simulations
to be equal to the rank ofYYY0 almost surely, if{µ(r)

k | r = 1, · · · , R−
1; k = 1, · · · ,K} are drawn from a continuous distribution, and the
source amplitudes are i.i.d Gaussian distributed.



The performance of the RMT-based source enumerator with
constant confidence level is not robust to the number of signals. For
a relatively low confidence level, it works well when the number of
signals is small, while tends to underestimate the number ofsignals
when the source number is large. On the other hand, for a relatively
high confidence level, it works well for large source numbers, while
tends to overestimation for small source numbers. To overcome this
drawback, we propose to use an adaptive confidence level instead of
constant one in theR-D RMT criterion. Mathematically, in thekth
(k = 1, · · · , P1 − 1) test,

α(k) =

{

exp[logα1 + (k − 1)/(c− 1) · log(αmid/α1)] k ≤ c

(α1 + α2)− α(P1 − k) otherwise
(8)

wherec = ⌊P1/2⌋ denotes the largest integer less than or equal
to P1/2, α1 andα2 are the user-defined lower and upper bounds
of α, respectively, andαmid = (α1 + α2)/2. The resultant source
enumerator is called adaptiveR-D RMT.

4. NUMERICAL EXAMPLES

We take theR-D harmonic retrieval model for illustration. The
spatial frequenciesµ(r)

k (r = 1, · · · , R − 1; k = 1, · · · ,K) are
i.i.d uniformly distributed within[−π, π], and the sources are i.i.d
ZMCSCG distributed with equal powerσ2

s . The SNR is defined as
SNR= 10log10

(

σ2
s/σ

2
z

)

. 2000 independent Monte Carlo runs have
been conducted. The performance measure is the probabilityof de-
tection (PoD), i.e., Pr(K̂ = K), averaged over spatial frequencies,
sources and noise realizations of all Monte Carlo runs.

The PoD’s of the following criteria are compared: MDL/AIC us-
ing eigenvalues associated withY (1), twoR-D RMT versions with
constant confidence levelsα1 = 10−4 andα2 = 0.25, and adaptive
RMT with α(k) defined as in (8). Figure 1 shows the curves ofα(k)
used in the following simulation.

First we consider a system whereK = 3 andK = 16 sources
impinge on a 4-D array of sizeM1 = M2 = M3 = M4 = 5, with
M4 = N = 5 snapshots. In Figure 2, the PoD of the RMT scheme
usingY (1) and other unfolded matrices forα1 = 10−4 andK = 3
are compared. It can be seen that the PoD of the RMT scheme using
Y

(1) is always better than or comparable to that using other unfolded
matrices. Same observations are made for other parameter settings.

Figure 3 compare the PoD of different criteria. We can see that
theR-D RMT criterion can detect the true number of signals in both
source number scenarios. While theR-D MDL/AIC/EFT criteria [9]
can detect at most 4 sources, theR-D RMT identifiability is signif-
icantly higher. However, the performance of theR-D RMT with
constant confidence level is not robust to the true number of signals.
For small number of signals,R-D RMT with α1 = 10−4 works well
and is consistent as the SNR goes to infinity, while for large num-
ber of signals, it tends to underestimate the true number of signals
and whenK = 16, the PoD is less than 0.84 even at high SNR. On
the contrary,R-D RMT with α2 = 0.25 tends to overestimation for
small source numbers and the PoD is only about 0.6 even at high
SNR whenK = 3, while for large source numbers, it works well
and gains large-SNR consistency. The adaptiveR-D RMT is a good
compromise of both versions and more robust to source numbers:
it works well for both small and large source numbers and achieves
near consistency in the larger-SNR limit. For relatively large source
numbers, AIC/MDL is not consistent as the SNR goes to infinity,
having a tendency to overestimate the true number of signals. This
is consistent with [12].

Figure 4 considers a system with a 5-D array of sizeM1 =
3,M2 = 4,M3 = 5,M4 = 6,M5 = 8, with M5 = N = 8
snapshots. In this case, theR-D EFT/MDL/AIC criteria proposed
in [9] can detect at most 7 sources, while the proposedR-D RMT
criteria can detect up to 40. And again, the adaptive RMT criterion
shows good robustness in a wide range of number of signals andits
performance outperforms the AIC/MDL.
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Fig. 1: Confidence levelα(k) as a function of hypothesized number
of signalsk when[α1, α2] = [10−4, 0.25].
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Fig. 2: Comparison of PoD of RMT by usingY (1) and other un-
folded matrices (α = 10−4,K = 3 ).

5. CONCLUSION

We have proposed a novelR-D (R ≥ 3) detection criterion for ac-
curate source enumeration. With the generalized multi-mode matrix
unfolding of the measurement tensor and the random matrix theory
(RMT), the eigenvalues associated with the unfolded matrixwhose
number of rows is closest to that of the columns are used for model
order selection via a sequence of nested hypothesis tests. Compared
with existingR-D detection schemes, the proposedR-D RMT cri-
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Fig. 3: PoD vs. SNR for a 4-D array of sizeM1 = M2 = M3 = M4 = 5 (left: K = 3; right: K = 16).
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Fig. 4: PoD vs. SNR for a 5-D array of sizeM1 = 3,M2 = 4,M3 = 5,M4 = 6,M5 = 8 (left: K = 2; right: K = 40).

terion is able to significantly improve the identifiability.The perfor-
mance of the adaptiveR-D RMT criterion is robust and works well
in a wide range of number of signals.
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